

Jane Barton*

*Contractor to Landcare Research New Zealand

Why aren't pathogens used more widely for weed control?

- Worldwide, pathogens have only been introduced to 11 countries (Arg, Aus, Chile, China, Fiji, India, NZ, PNG, SAf, Tahiti, USA)
- No evidence of pathogen damage in the field that was not predicted by HR testing. Barton, J. (2004) Biological Control 31: 99-122.

Methods

- List all pathogens ever used for biocontrol of weeds
- Find info. on pre-release host range testing
- Find info. on their behaviour in the field after release ('pers. comm.')
- Compare the two to determine how accurate pre-release predictions have been to-date

Results (2010)

- 37 projects worldwide (each project = intro. of 1 pathogen to 1 country for 1 weed complex)
- 28 spp. of pathogens (all fungi) released
- > 28 spp. of weeds targeted
- Pathogens from 16 countries
- Most pathogens have established, spread, and had at least some impact on their target

Results (2010): Non-target damage in the field

- Out of those 37 projects:
 - 2 projects with non-target damage in out-door field plots
 - 2 projects with <u>predicted</u> nontarget damage in the field
 - 33 projects with no non-target damage in the field at all!

Target weed: Musk thistle

- Carduus nutans ssp. leiophyllus
 - (= C. thoermeri)
- Major weed of pastures & rangelands in the USA (competes with pasture)
- From Europe & Asia
- Control with herbicide not economically feasible

Puccinia carduorum

- Rust fungus (Uredinales: Pucciniaceae)
- Attacks C. thoermeri (and many other Carduus spp.)
- Causes lesions on leaves and reduces plant growth and seed production

Rust lesions on target weed in glasshouse. Image from Dr William L. Bruckart III, USDA-ARS-FDWSRU, Maryland, USA

Host range results: containment

- Rust applied to 63 spp. (all Asteraceae)
- Target weed only plant with severe symptoms,
- BUT, in greenhouse limited infection also on non-targets, including globe artichoke and native American thistles (same tribe as target)

Rust lesions on artichoke in glasshouse. Image from Dr William L. Bruckart III, USDA-ARS-FDWSRU, Maryland, USA

Host range: observations in the field

- In Eurasia the rust, the target weed, and globe artichoke all overlap in range
- Globe artichoke has not been recorded as a host there
- Field test needed due to contradiction between indoor and field observations

Image from http://www.hear.org/starr/hiplants/images/

Host Range Results: Field

- Trial conducted over 2 years in area where eradication possible (Virginia)
- Tested globe artichoke (Cynara scolymus) + 10 spp. native American thistles (Cirsium)
- Only non-target damage = 1 pustule on 1/32 globe artichoke plants

Decision

- Concluded that "P. carduorum poses no threat to the non-target species tested"
- Rust in Virginia allowed to spread (1987)

Behaviour after release

P. carduorum established in USA

Has not been found on any non-target spp. in the field since release

Parthenium hysterophorus (Parthenium weed or false ragweed)

- Annual, herbaceous plant (Asteraceae)
- Origin = Neotropics
- Major weed in Australia (Qld.) and India
- Aggressively invasive
- Causes allergic responses, respiratory problems, and dermatitis in susceptible people

Puccinia melampodii (rust) Host range results: containment

- Rust applied to 63 non-target species
- Caused symptoms on several nontarget (but weedy) Asteraceous spp., and sunflower, in the glasshouse
- Decision made to release the rust in Australia (benefits > costs)

Host range: observations in the field

- However, prior to decision re. India, further tests (outdoors, in Australia) were done on close relatives grown commercially there
- Indian variety of marigold (Calendula officinalis) found to be quite susceptible
- Puccinia melampodii was not released in India (as discussed by M. Seier of CABI)

Behaviour after release

P. melampodii released in Australia in 1999

It has not been reported from any other nontarget plants since release

Image = Target weed with P. melampodii pustules. Supplied by M. Seier (CABI).

Acacia saligna (Port Jackson willow)

- Small tree (Fabaceae)
- From Western Australia
- Major weed in SAf
- Difficult to clear due to coppicing after fire or cutting
- Forms dense stands at the expense of native vegetation
- Can totally replace natural fynboss

Image from http://www.australianplants.com/images/acacia.saligna.jpg

Acacia saligna with galls caused by Uromycladium tepperianum

- Gall rust (Uredinales: Pileolariaceae)
- Attacks A. saligna in Australia
- Causes galling on stems, branches, phyllodes and flowers and the formation of witches brooms on branches
- Severely affected plants more susceptible to drought

Host range results: containment

- Hosts included several Acacia spp. but evidence of species-specific strains
- Spores from galls on A. saligna applied to 24 species (23. spp. Acacia + 1 sp. Paraserianthes)
- Seedlings of both A. pulchella and A. cyclops (non-targets) developed abnormal galls after inoculation

Host range: observations in the field

- However, in Australia A. pulchella has not been recorded as a host of U. tepperianum
- A. cyclops has previously been recorded as a host, but this appears to happen only occasionally
- Rust released in South Africa in 1987

Blackberry (*Rubus fruticosus* agg.)

Image from http://wildeherb.com

- Common weed in many countries including Australia and New Zealand
- From Europe
- Grows and spreads vigorously
- Prickles problematic for grazing animals and humans

Phragmidium violaceum (rust) Host range results: containment

- Agent chosen for Australian biocontrol project was a rust from Europe (*P. violaceum*)
- Rust applied to 51 non-target spp. (> 1 var)
- Caused symptoms on 15 Rubus spp. (> 1 var)
- 3 of 5 Rubus spp. native to NZ susceptible
- Decision made to release the rust in Australia 1991 (benefits > costs)
- Illegal release/s prior to legitimate (1984)

Non-target damage in field (predicted)

- P. violaceum found on 2/135 Rubus cissoides plants examined (2005)
- Rust not found on another native that was equally susceptible in tests (R. schmidelioides)
- Damage minor and occurred where non-target species was growing beside heavily infected target weed

Overall results (2010): 37 Projects

- 18 cases where no damage predicted in HR testing and no damage observed in the field
- 1 case where there was no HR testing done specifically for that project (used overseas results)
- 18 cases (including the 4 case studies) where more species were damaged in HR testing than in the field

Expanded host range found in glasshouse tests

- Phenomenon not unusual
- Disease results from combination of pathogen, host and environment
- Optimum environmental conditions for disease development used to create 'worst case scenario'
- Also, artificial conditions can
 'predispose' non-target plants to attack

Use other info. to interpret glasshouse data

- Host use by pathogen in native range
- Severity of disease symptoms on nontarget plants compared with targets
- Results of host range tests conducted outdoors (where feasible), either
 - In native range of pathogen
 - In other country where pathogen has already been released
 - In country proposed for release (if eradication possible)

Is it safe to use pathogens as classical biocontrol agents for weeds?

Yes!

Introduction of exotic pathogens is (and should continue to be) a very safe and environmentally benign method of weed control

Image: http://greensungardens.wordpress.com

Acknowledgements

- Conference organisers (Honorarium)
- New Zealand Biosecurity Institute (Travel Award)
- Royal Society of New Zealand (Charles Fleming Fund Travel Award)
- Foundation for Research, Science and Technology NZ
- Landcare Research
- Researchers who provided information