

Successful biological control of mile-a-minute weed (*Persicaria perfoliata*) in Eastern North America:

Establishment and impact of the Asian weevil, *Rhinoncomimus latipes*

J. Hough-Goldstein, E. Lake, and R. Reardon

Mile-a-minute weed: *Persicaria perfoliata* (AKA *Polygonum perfoliatum*)

Triangular leaves, flared ocreae surround stem, small backward-projecting barbs

Forest edge, disturbed open areas

White Clay Creek State Park, July, 2003

Pea Patch Island, Delaware, Aug. 2003

Annual vine - vines grow 20 ft+ in a season

Impacts:

- Inhibits reforestation/ regeneration
- Interferes with recreational use of natural areas (barbs)
- Reduces quality wildlife habitat
- Likely effects on native flora
 - Blue Hills, Milton MA

White Clay Creek State Park, Delaware July 23, 2003

Dead vines in winter

- Large numbers of seeds produced, survive 6 years in seed bank
- Seeds germinate under old plants
- Dispersed by birds, deer, water

Cluster of achenes (single-seeded fruits)

Seedlings in May

Origin of mile-a-minute weed

Native to Asia:

China

Japan

Korea

India

Bangladesh

Nepal

Bhutan

Burma (Myanmar)

Thailand

Vietnam

the Malay Peninsula

Taiwan

the Philippines

Also found in:

Turkey eastern Russia

Establishment in U.S.

- Nursery in York Co., PA, 1930s
- From Japan, with shipment of holly seed (Moul 1948)

 Before 1980: five counties in PA & parts of MD

Distribution in U.S.

~30 more counties added, 2008 - 2010

Summer 2010: NW North Carolina

and Ecosystem Health

Biological Control Program – US Forest Service, 1996

- >100 insect species on MAM weed in China (Ding et al. 2004), heavy feeding
- Preliminary host-range studies in China
- Several species sent to Delaware (quarantine): 1999

MAM in US (Les Mehrhoff, Conn., IPANE)

MAM in China (Ding Jianqing, Wuhan Botanical Garden)

Rhinoncomimus latipes Korotyaev,1997

- Host specificity
- China: tested on 49 plant species (various families, including crops)
- <u>Delaware</u>: tested in quarantine on 28 species, mostly Polygonaceae (all tribes & sections)

Adult weevil ~2 mm long

Found to be extremely host-specific

- Did not feed at all on any plant species outside Polygonaceae
- Minor adult feeding on a few Polygonaceae
- No egg-laying or larval survival on any host except MAM
- Permit for field release in North America: July 2004 (8 years after start of program)

Colpetzer et al. 2004

Biology of the Weevil

• **Eggs** laid on plant, hatch in ~3 - 5 days

Larvae crawl along stems, enter node

• Feed inside stem/node

Newly hatched larva

Larva feeding in stem

Photos by Dan Palmer & Amy Diercks, N. J. Dept. Ag.

Larvae drop out of stem to pupate in soil

Fully developed larva

Pupa inside pupation capsule, secreted in soil

Adults emerge from soil ~1 week later

 Black when emerge, turn orange-brown after feeding on milea-minute for several days

- Adults mate, lay eggs -- ~26 days from egg to adult
- Multiple overlapping generations continue until September (adults overwinter in soil)

Impact on plants? Cage studies with single plants (isolated in the field) in weevil-proof cages

2005 pilot study: Highly significant difference by sun exposure

Seed production and plant dry weight:

2006: plants without competition

 20 weevils per cage suppressed seed production for ~9 wk

 Were able to produce seeds later in year despite presence of weevils

2007 cage study – other plants plus weevils = MAM mortality

Seed production in surviving plants again greatly delayed in cages with weevils

Field impact: 3 replicated release sites, beginning Spring 2005

- Graduate student Ellen Lake
- Weevil life history, population growth, and dispersal in field
- Impact on mile-aminute

450 weevils released in the center of each array 9 June 05

Life history & dispersal

- 3-4 overlapping generations
- Continual egg-laying until mid-August to mid-September
- Dispersed throughout most of arrays (15-25 m) in one season
- October, 200+ meters away, across tree line & hay fields, on isolated MAM plants
- By next year, 600-700 m from release site

Spring Seedling Counts

Native plant community

- Currently assessing other vegetation
- Major change in the at the CREP site
- Some alien invasives
- Dramatic increase in elderberry
- Very little MAM left at that site at accessible plots

Weevils have been reared since 2004 at NJ Dept. Ag Beneficial Insects Lab

Dan Palmer, Amy Diercks, Carol Ott, Tom Dorsey

Oviposition container

Larval development containers

Establishment

- Overwintered and established at 54 of 56 (96.4%) of sites where released, 2004 – 2007
- Withstood extremes of flooding
- Releases conducted between May and October all successful (however, two that failed were in October)

Hough-Goldstein et al. 2009, Biological Control

Sites where R. latipes were released, 2004 – 2007

Closed circles: monitored sites

NJ-1 Spring samples

~7000 weevils released in 2005

H-G et al. 2009. Biological Control 51:450-457

Abbott's Meadow (NJ-1) - ~7,000 weevils, 2005

Photos: Mark Mayer, NJ Dept. Ag.

Mark Mayer

Floodgate Rd. (NJ-2) - 200 weevils in 2004 plus ~3,300 in 2005

2006

2007

Mark Mayer, NJDA

Pea Patch Release Site – July 17, 2007

Pea Patch Sept. 18, 2009

- Goldenrod, sensitive fern
- Japanese stilt grass, Ailanthus

Sept. 15, 2010: mile-a-minute DEAD with few seeds (drought? – shallow root system + weevils)

Dispersal:

- Weevil releases and non-release recoveries in NJ through 2008
- Avg. dispersal distance 2.7 miles per year

(Mark Mayer)

Field host range of the weevil (M. Frye and E. Lake, 2009)

 Close relatives of MAM transplanted to farm field (replicated array)

	P. plant	
P. sagittata	P. hydropiper	P. hydropoides
P. pensylvanica	P. punctata	P. arifolia
P. perfoliata	F. esculentum	P. lapathifolia
P. aviculare	P. longiseta	P. virginiana

Weevils coated with fluorescent dust placed at base of the plants (10 per plant)

- Weevils moved from non-target plants to Persicaria perfoliata within 3 h
- The likelihood of finding a weevil on a non-target plant by 44 h was 3.5%
- Weevils did not feed or oviposit on any nontarget plant under open field conditions

Weevils found on mile-a-minute weed

Red (dusted) weevils placed at base of 12 non-target plant species. Yellow (dusted) weevils placed at base of mile-a-minute weed.

Frye et al. 2010, Biological Control

MAM and weevils in sun and shade

Observation:

 MAM in shade seems to have less weevil feeding damage than in full sun

40% shade cloth applied June 2, 2008 (Shane LaCoss), replicated plots with & without shade

Repeated with fully factorial design in 2010

- Sun and shade, with and without weevils
- Dinotefuron
 (Safari), systemic
 insecticide used to
 eliminate weevils
- Data from central
 1 m²

Counting weevils and estimating % cover MAM

Higher density of weevils in sun

Weevils per m² MAM (2010)

Why more weevils (node damage, egg-laying) in sun?

Nodes are thicker in sun, may support better larval growth

MAM harvest Aug. 10: a sun-loving plant, negated by presence of weevils

Conclusion

- R. latipes establishes and disperses well, probably
 ~2-3 miles per year
- No indication of non-target impacts
- Populations can build up rapidly
- Impact on plant community can be very rapid, depending on presence of competing plants
- In Mid-Atlantic in disturbed areas, competing plants in some areas consist primarily of other non-native invasives

Current Research

- Integrated Weed Management
- E. Lake PhD project: combining herbicide application and plant competition via restoration planting with biological control
- installed fall 2008 (all high MAM + weevils):

Goldenrod and elms

Control

High density goldenrod

Low density goldenrod

Native Plant Community

- Botanical survey conducted this fall
- Variety of native plants emerging, including tree seedlings, a variety of goldenrod spp., several sedge spp., bloodroot, etc.
- Lobelia at Crosslands site: dominant vegetation at start was MAM and Japanese stiltgrass

- K. Cutting MS project: assessing impact of planting native seed mix (grasses and herbaceous plants), with and without weevils
- Same treatments in field and greenhouse
- Started Spring 2009

