The Redbay Ambrosia Beetle and Laurel Wilt: Biology, Impact, and Thoughts on Biological Control

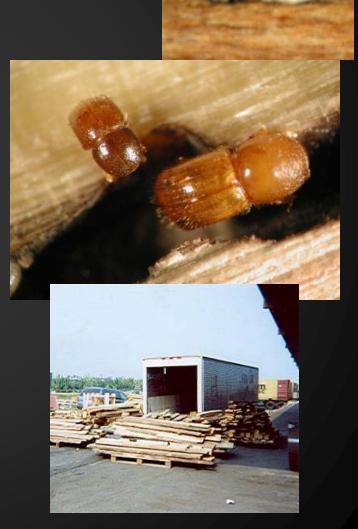
Albert E. Mayfield and James L. Hanula

USDA Forest Service, Southern Research Station

So, what is a redbay?

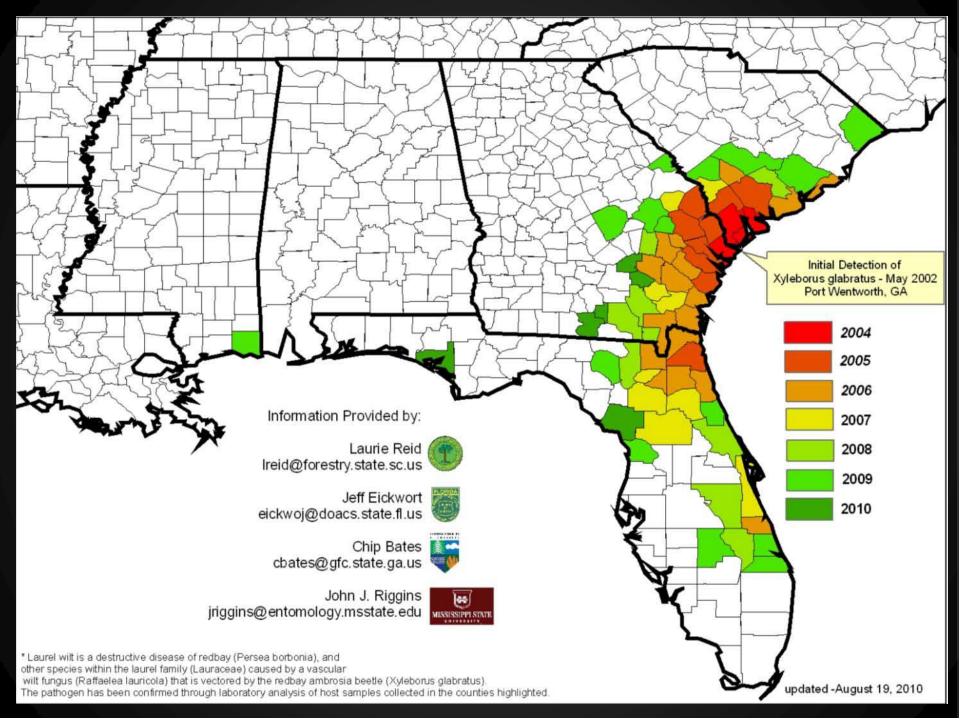
Persea borbonia (Lauraceae)

 Aromatic, broadleaved, evergreen of the US Southeastern Coastal Plain



Exotic Scolytinae (bark and ambrosia beetles) in the US

- 59 exotic spp. established
 - 30 last 30 yrs, 12 since 2000
- Majority ambrosia beetles
- Easily transported and established in wood and solid wood packing material



Brief History of Laurel Wilt

- 2002: An Asian ambrosia beetle (Xyleborus glabratus) detected near Savannah, GA
- 2004-2005: Beetle determined to be vector of fungus (Raffaelea lauricola) causing wilt disease and widespread redbay mortality (SC, GA, FL)
- 2005-2010: continued range expansion in Southeastern US

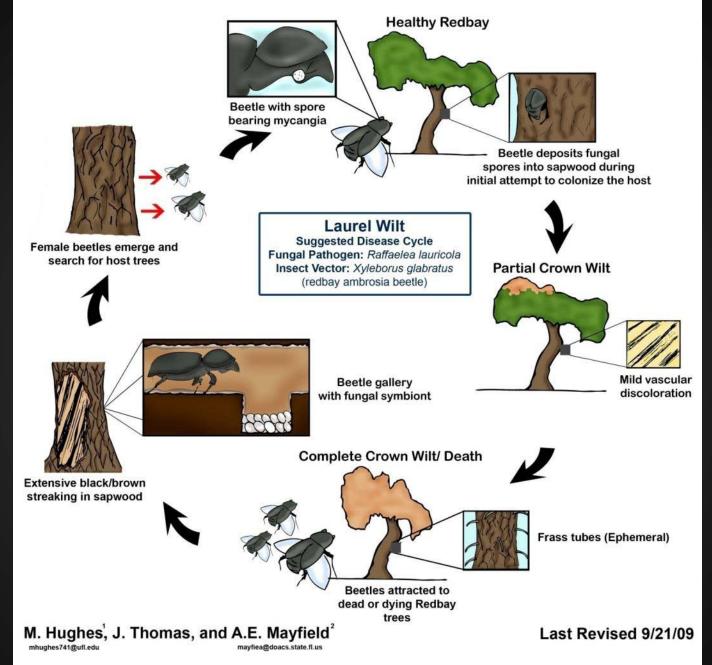
Redbay Ambrosia Beetle (Xyleborus glabratus)

- Coleoptera: Curculionidae: Scolytinae
 - Symbiont fungi, mandibular mycangia
 - Partial parthenogenesis, sib mating
 - Sex ratio strongly skewed to female

Redbay Ambrosia Beetle (Xyleborus glabratus)

©2010 Google - Imagery ©2010 TerraMetrics, NASA, Map data ©2010 AND, Geoceptic, Consulting, MapData Sciences Pty Ltd, PSMA, MapLink, Tele Atlas -

- Native to India, Bangladesh, Myanmar, Taiwan, Japan
- Reported Asian host families (genera):
 - Lauraceae (Lindera, Litsea, Phoebe)
 - Dipterocarpaceae (Shorea)
 - Fagaceae (Lithocarpus)
 - Fabaceae (Leucaena)


Laurel wilt pathogen (Raffaelea lauricola)

- Recently described as one of 6
 Raffaelea spp. in the mycangia
 (Harrington et al. 2010)
- Presumed to have arrived with vector
- Transmitted to host sapwood via RAB and moves systemically in the xylem

¹University of Florida, Institute of Food and Agricultural Sciences, Department of Plant Pathology, P.O. Box 110680, Gainesville, FL 32611 ²Florida Department of Agriculture and Consumer Services, Division of Forestry, 1911 SW 34th Street, Gainesville, FL 32608

RAB Biology and Host Attraction

Hanula, J.L. et al. 2008. J. Econ. Entomol. 101:1276 Hanula, J.L and Sullivan, B. 2008. Environ. Entomol. 37:1403

- Adults active year round, peak in September (GA and SC)
- Brood development takes about 60 days; multiple gen/year
- Diseased + beetle-infested redbay wood is not more attractive than uninfested wood

RAB Biology and Host Attraction

Hanula, J.L. et al. 2008. J. Econ. Entomol. 101:1276 Hanula, J.L and Sullivan, B. 2008. Environ. Entomol. 37:1403

- Trap catch positively correlates with number of recently-dead redbay trees (leaves attached)
 - After mature redbays gone, beetle populations drop dramatically but do not disappear
- Manuka oil and phoebe oil are attractive lures

Confirmed Laurel Wilt Hosts Plants in US

Confirmed in the field:

- Redbay (*Persea borbonia*)¹
- Swamp bay (Persea palustris)¹
- Sassafras (Sassafras albidum)¹
- Pondspice (Litsea aestivalis)¹ endangered
- Pondberry (Lindera melissifolia)¹ endangered
- Camphor (Cinnamomum camphora)³
- Avocado (Persea americana)²

Susceptible in inoculation trials:

- Spicebush (Lindera benzoin)¹
- California laurel (Umbellularia californica)⁴

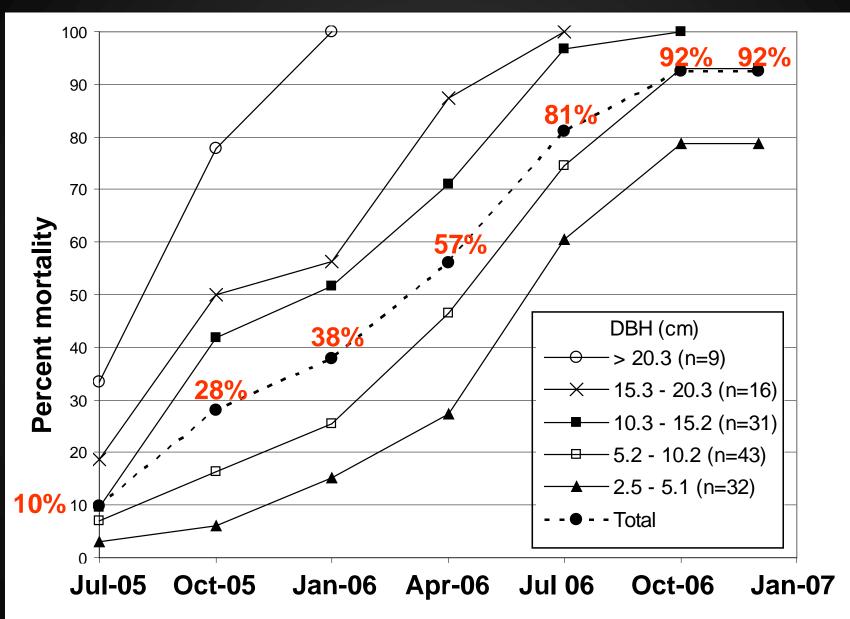
¹ Fraedrich, S.W. et al. 2008. Plant Dis. 92:215

³ Smith, J.A. et al. 2009. Plant Dis. 93:198

² Mayfield A.E., III et al. 2008. Plant Dis. 92:976

Impact

"Bayhead" site near Claxton, GA (photo: S. Cameron)


Impact

Redbay mortality curve at Ft. George Island, FL

S.W. Fraedrich et al. 2008. Plant Disease 92: 215-224

Some small redbay saplings and many seedlings remain in aftermath of laurel wilt outbreaks

Impact on Avocado

- Landscape trees have been killed, RAB attracted to wood
- Certain cultivars
 susceptible to fungus in
 inoculation trials
- RAB detected in Miami-Dade County (main FL production)
- No infestations in production groves yet

savetheguac

rirewood Alere video

signs of the disease

LOOK OUT FOR these symptoms on your trees

rirewood handfing

use local firewood only and don't move unprocessed wood

LEEPN More

about the insect and disease threatening avocados

eve the succ

recipes

try one of these tasty creations made with florida avocados

registered norseries

pon't transport host trees unless purchased from a registered nursery

Management

- Restrict transport of infested wood
- Sanitation
- Chemical Treatments
 - Mayfield et al. 2008. Arboric. Urban Forestry 34: 317-324
- Propagation of resistant trees
- Biological Control?

Biological Control of Redbay Ambrosia Beetle?

- Some Challenges:
 - Spends most of life cycle in the sapwood, small galleries
 - Single female may start new population, initiate disease
 - Presumably no pheromone on which natural enemies might cue
 - Population levels extremely low after preferred host material eliminated
 - Scant information from native range
 - No precedent cases of biological control of ambrosia beetles

Biological Control of Redbay Ambrosia Beetle / Laurel Wilt:

2 preliminary studies at the University of Florida

Inhibitory Endophyte

Shin, Keumchul, Hughes, M.A., Smith, J.A., and Ploetz, R.C.
University of Florida

- Endophytes isolated from putatively resistant trees and susceptible controls at same locations
- Phaeomoniella sp. (ascomycete)
- Consistently isolated from some asymptomatic trees only
- Completely inhibits growth
 R. lauricola in vitro
- Studies to determine biocontrol potential underway using this and other species

Potential natural enemies from infested host material

(J. Peña et al, Universtiy of Florida)

- Collect predators, and parasitoids that emerge from infested bolts
- Infest clean bolts with lab-reared beetles, deploy in field and collect periodically
- Florida and Taiwan

Emergence of possible natural enemies from infested host material in Florida (Peña et al, unpubl.)

Natural enemies of xylem-inhabiting ambrosia beetles: Literature

- Parasitoids: Hymenoptera
 - Eulophidae: Phymasticus xylebori
 - Kills adult Xyleborus perforans associated with macadamia trees in Hawaii, low (15%) parasitism rate (Chang 1993), other specimens from Costa Rica, South Carolina - hosts unreported (LaSalle 1995)
 - Pteromalidae: Perniphora spp.
 - P. robusta, assoc. w/ Trypodendron lineatum (Novak 1960), T. domesticum and Xyleborus dispar (Kenis et al. 2004)
 - P. americana, assoc. w/ T. betulae in Maine/NB (Miller 1965)
 - Braconidae: Cryptoxilos spp.
 - C. beaveri, low adult parasitism rate of Hypothnemus spp. in Commersonia trees ("kurrajong") in Fiji (Shaw & Berry 2005)
 - Euytomidae: Eurytoma polygrahi (Kenis et al. 2004)
 - Suspected larval ectoparasitoid of Trypodendron lineatum and T. domesticum

- Parasitoids: Hymenoptera (cont.)
 - Perilampidae: Monacon spp. (Darling & Roberts 1999)
 - *M. robertsi:* larvae (planidia) follow adult *Crossotarsus barbatus* (Platypodidae) into gallery, parasitize eggs, larvae
 - Tree: Xanthophyllum papuanum in Papua New Guinea, Indonesia
 - Low parasitism rate, poor biocontrol potential

- Parasites: Coleoptera
 - Colydiidae: Sosylus spp. (Roberts 1969)
 - Larvae are pupal parasites of Platypodidae, adults of some species are AB predators (Americas, Africa, Asia)
- Parasites: Nematodes
 - Tylenchid larva found in *Trypodendron lineatum* B.C., effect unknown (Thong & Webster 1983)
 - Review by Kanzaki and Kosaka (2009):
 - Only small fraction of nematode records from ambrosia beetles compared to rest of Scolytinae
 - Some groups (e.g. Ruehmaphelenchus) specific to ambrosia beetles, almost nothing known RE biological relationships

- Predators: Coleoptera
 - Cleridae: Thanasimus spp.
 - T. dubius adults attacked adult Platypus flavicornus (Platypodinae) during SPB infestation (Clarke & Menard 2006)
 - T. rufipes preys on Trypodendron lineatum (Kenis et al. 2004)
 - Brentidae: Cyphagogus spp.
 - Adults prey on adult Platypodidae entering galleries (Thompson 1996)
 - Rhizophagidae: Rhizophagus spp.
 - R. depressus and R. dispar prey on Trypodendron lineatum (Kenis et al 2004)
 - Note: Rhizophagus grandis is mass-reared biological control agent for Dendroctonus micans in Europe, Middle East

- Pathogens: Bacteria
 - Bacillus thuringiensis subsp. tenebrionis:
 - isolated from *Xyleborus dispar*, being explored as possible coleopteran biopesticide in Turkey (Sezen et al. 2010)... Effects?
 - Several genera (Pseudomonas, Cloaca, Bacillus) found in Xyloterus lineatus (Lynseko 1959)... Effects?
 - Pseudomonas septica found in Trypodenron lineatum (Nowak 1960)... Effects?
 - "...no bacterium is known at the moment to act effectively in bark beetles" (Review by Wegensteiner 2004)

- Pathogens: Fungi
 - Beauveria bassiana (ascomycete)
 - Worldwide, soil-inhabiting, insect pathogen
 - Spore suspensions sprayed on bark caused moderate mortality levels in *Trypodendron lineatum* (Prazak 1988, 1991, 1997)
 - Non-specific "bio insecticide"

Closing Thoughts

- More research on natural enemies of ambrosia beetles and their roles in regulating populations is warranted
 - RAB in native and introduced ranges
- A number of factors (habitat, reproduction biology, population patterns) make RAB a challenging case for biological control
- Is there enough interest and potential for success for a biological control program?

Laurel Wilt / RAB Resources:

- www.fs.fed.us/r8/foresthealth/laurelwilt
- Redbay Recovery Plan USDA-ARS National Plant Disease Recovery System

Thank you

Bud Mayfield

USDA Forest Service

1577 Brevard Road

Asheville, NC 28806

amayfield02@fs.fed.us

Jim Hanula

USDA Forest Service

320 Green Street

Athens, GA 30602

jhanula@fs.fed.us